Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 351: 141216, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224748

RESUMEN

Sulfamethoxazole and metronidazole are emerging pollutants commonly found in surface water and wastewater. These compounds have a significant environmental impact, being necessary in the design of technologies for their removal. Recently, the advanced oxidation process has been proven successful in the elimination of this kind of compounds. In this sense, the present work discusses the application of UV/H2O2 and ozonation for the degradation of both molecules in single and binary systems. Experimental kinetic data from O3 and UV/H2O2 process were adequately described by a first and second kinetic model, respectively. From the ANOVA analysis, it was determined that the most statistically significant variables were the initial concentration of the drugs (0.03 mmol L-1) and the pH = 8 for UV/H2O2 system, and only the pH (optimal value of 6) was significant for degradation with O3. Results showed that both molecules were eliminated with high degradation efficiencies (88-94% for UV/H2O2 and 79-98% for O3) in short reaction times (around 30-90 min). The modeling was performed using a quadratic regression model through response surface methodology representing adequately 90 % of the experimental data. On the other hand, an artificial neural network was used to evaluate a non-linear multi-variable system, a 98% of fit between the model and experimental data was obtained. The identification of degradation byproducts was performed by high-performance liquid chromatography coupled to a time mass detector. After each process, at least four to five stable byproducts were found in the treated water, reducing the mineralization percentage to 20% for both molecules.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Inteligencia Artificial , Peróxido de Hidrógeno/química , Calidad del Agua , Rayos Ultravioleta , Oxidación-Reducción , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Ozono/química
2.
Environ Res ; 241: 117671, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37984789

RESUMEN

Six Functionalized Activated Carbon Cloths (FACCs) were designed to obtain fundamental information for training a Bayesian Regularized Artificial Neural Network (BRANN) capable of predicting adsorption capacity of the FACCs to synthesize tailor-made materials with potential application as dialysis membranes. Characterization studies showed that FACCs have a high surface area (1354-2073 m2 g-1) associated with increased microporosity (W0, average: 0.57 cm3 g-1). Materials are carbonaceous, with a carbon content between 69 and 92%. Chemical treatments modify the pHpzc of materials between 4.1 and 7.8 due to incorporating functional groups on the surface (C=O, -COOH, -OH, -NH, -NH2). Uremic toxins tests showed a high elimination rate of p-cresol (73 mg g-1) and creatinine (90 mg g-1) which is not affected by the matrix (aqueous solution and simulated serum). However, in the case of uric acid, adsorption capacity decreased from 143 mg g-1 to 71 mg g-1, respectively. When comparing the kinetic constants of the adsorption studies in simulated serum versus the studies in aqueous solution, it can be seen that this does not undergo significant changes (0.02 min-1), evidencing the versatility of the material to work in different matrices. The previous studies, in combination with characterization of the materials, allowed to establish the adsorption mechanism. Thus, it permitted to train the BRANN to obtain mathematical models capable to predict the kinetic adsorption of the toxins studied. It is concluded that the predominant adsorption mechanism is due to π-π interactions between the adsorbate unsaturations with the material's pseudo-graphitic planes. Results show that FACCs are promising materials for hemodialysis membranes. Finally, taking into consideration the adsorption capacities and rates, as well as the semiquantitative analysis of the environmental impact associated with the preparation of the adsorbents, the best adsorbent (CC, Eco-Scale = 91.5) was selected. The studies presented show that the material is eco-friendly and highly efficient in the elimination of uremic toxins.


Asunto(s)
Tóxinas Urémicas , Contaminantes Químicos del Agua , Adsorción , Inteligencia Artificial , Teorema de Bayes , Carbón Orgánico , Diálisis Renal/métodos , Cinética , Agua
3.
Foods ; 12(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37893722

RESUMEN

In the present research work, an algorithm of artificial neural network (ANN) has been developed based on the processing of digital images of Persian lemons with the aim of optimizing the quality control of the product. For this purpose, the physical properties (weight, thickness of the peel, diameter, length, and color) of 90 lemons selected from the company Esperanza de San José Ornelas SPR de RL (Jalisco, Mexico) were studied, which were divided into three groups (Category "extra", Category I, and Category II) according to their characteristics. The parameters of weight (26.50 ± 3.00 g), diameter/length (0.92 ± 0.08) and thickness of the peel (1.50 ± 0.29 mm) did not present significant differences between groups. On the other hand, the color (determined by the RGB and HSV models) presents statistically significant changes between groups. Due to the above, the proposed ANN correctly classifies 96.60% of the data obtained for each of the groups studied. Once the ANN was trained, its application was tested in an automatic classification process. For this purpose, a prototype based on the operation of a stepper motor was simulated using Simulink from Matlab, which is connected to three ideal switches powered by three variable pulse generators that receive the information from an ANN and provide the corresponding signal for the motor to turn to a specific position. Manual classification is a process that requires expert personnel and is prone to human error. The scientific development presented shows an alternative for the automation of the process using low-cost computational tools as a potential alternative.

4.
Foods ; 12(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37444343

RESUMEN

The present research shows a robust isotopic ratio characterization of Carbon-13 (δ13CVPDB) in congeneric compounds such as methanol, n-propanol, isoamyl alcohol, ethyl lactate, ethyl acetate, ethanol, and acetaldehyde in representative samples (n = 69) of Tequila 100% agave silver class (TSC), employing gas chromatography/combustion/isotope-ratio mass spectrometry (GC/C/IRMS). From the information obtained, the construction of a radial plot attributable to the isotopic fingerprint of TSC was achieved. With this information, a diagnostic test was designed to determine the authenticity of TSC, comparing alcoholic beverages from other agave species as non-authentic samples. The sensitivity of the test was 94.2%; the specificity was 83.3%. Additionally, non-authentic samples were analyzed that meet all the criteria established in the regulations. The results obtained show that the GC/C/IRMS analytical technique and designed diagnostic test are useful as auxiliary parameters to determine the authenticity of the beverage, thus managing to determine the adulteration or falsification of the product.

5.
Food Res Int ; 169: 112859, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254433

RESUMEN

The study of the evolution of color of alcoholic beverages subjected to accelerate maturation process using heat-treated French oak wood fragments is presented. The results show that it is possible to obtain tonalities like aged beverages in 4 weeks. In this sense, the fragments conditioned at 150 °C (light toasted) proportionated colors like white wine, pale straw, and pale gold. On the other hand, the fragments that received a heat treatment at 200 °C (medium toasted) present yellow tones such as old gold, amber, and deep gold. Finally, the fragments treated at 250 °C (heavily toasted) are those with the most intense yellow tones, classified as sweet chestnut, sherry, russet, muscat, and tawny. The studies of kinetic maturation concluded that the mathematical model of parabolic diffusion could correctly describe the process. Based on this, it is concluded that the heat treatment increases the cavities of the most exposed surface of the wood, increasing the maximum humidity of the materials by 20 %; in such a way that during the first two weeks, there is a diffusion of the solution to the active sites. Wood bioactive compounds on the outer surface achieve a rapid extraction, such as flavonoids, which oxidize rapidly within the solution, generating an increase in yellow color. The previous results were corroborated in a real case analysis using Tequila which can be concluded that the proposed process can give the beverage similar colors to an aged, extra-aged, and ultra-aged class in less than 4 weeks.


Asunto(s)
Fagaceae , Vino , Vino/análisis , Calor , Madera/química , Nueces
6.
Artículo en Inglés | MEDLINE | ID: mdl-36901509

RESUMEN

Currently, water pollution represents a serious environmental threat, causing an impact not only to fauna and flora but also to human health. Among these pollutants, inorganic and organic pollutants are predominantly important representing high toxicity and persistence and being difficult to treat using current methodologies. For this reason, several research groups are searching for strategies to detect and remedy contaminated water bodies and effluents. Due to the above, a current review of the state of the situation has been carried out. The results obtained show that in the American continent a high diversity of contaminants is present in the water bodies affecting several aspects, in which in some cases, there exists alternatives to realize the remediation of contaminated water. It is concluded that the actual challenge is to establish sanitation measures at the local level based on the specific needs of the geographical area of interest. Therefore, water treatment plants must be designed according to the contaminants present in the water of the region and tailored to the needs of the population of interest.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Contaminantes del Agua , Purificación del Agua , Humanos , Contaminantes Químicos del Agua/toxicidad , Contaminación del Agua , Purificación del Agua/métodos
7.
Food Chem ; 408: 135223, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36535180

RESUMEN

Currently, the authenticity and traceability of Tequila are determined in an inspection process carried out by the Tequila Regulatory Council. However, in recent years, the authorities have seized illegal alcoholic products that are marketed as Tequila without being so, making it necessary to strengthen the current methods of detecting counterfeiting and/or adulteration. Therefore, it is important to establish a review of the current analytical techniques that have been proposed to solve this problem. In this review, emphasis is placed on the analysis of the analytical techniques that have been used to consolidate a profile of authenticity and quality in Tequila, thus highlighting new auxiliary analytical techniques to the current verification process, establishing future validation opportunities in terms of international quality control. The use of isotopic ratios stands out as the most robust technique because it establishes the type of sugar source used and the maturation time of the manufacturing process.


Asunto(s)
Bebidas Alcohólicas , Carbohidratos , Carbohidratos/análisis , Control de Calidad , Contaminación de Medicamentos
8.
Foods ; 11(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35454724

RESUMEN

The interest of consumers to acquire Tequila has caused an increase in its sales. As demand increases, the Tequila industry must obtain its raw material at a constant rate and agave farmers must be prepared to satisfy this supply chain. Because of this, modernization of the strategies used to ensure a planned, scheduled, timely, and predictable production will allow farmers to maintain the current demand for Tequila. This has been evidenced in official historical records from 1999 to 2020 where there is a fluctuation in the price of agave due to supply and demand. Given this scenario, this research shows the development of a multivariable predictive mathematical model that will permit the agave−Tequila production chain to work based on a smart implementation of planned actions to guarantee the agave supply to the Tequila industry. The proposed model has a goodness of fit (R = 0.8676; R¯2 = 0.8609; F(1,20) = 131.01 > F0.01 (1,20) = 8.10) and demonstrates the impact on agave prices is due to several factors: Tequila exports (α = 0.50) > agave plants harvested "jima" (α = 0.44) > dollar exchange (α = 0.43) > Tequila production (α = 0.06) > annual accumulated precipitation (α = 0.05). Nevertheless, the price forecast can be influenced by climate change or economic crises that affect the supply chain. In conclusion, a prediction of agave price stabilization for five years is shown where authorized producers can evaluate future scenarios so that the agave supply chain can be guaranteed for Tequila production, facilitating the decision making regarding its raw material.

9.
Materials (Basel) ; 16(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36614347

RESUMEN

In the present research work, the use of agro-industrial waste such as agave bagasse from the tequila industry was carried out. The agave bagasse was treated to obtain biosorbent and hydrochar materials. Direct Blue 86 was used as an adsorbate model to evaluate the performance of both materials. The adsorption studies showed an adsorption capacity of 6.49 mg g−1 in static and 17.7 mg g−1 in dynamic, associated with a physisorption process between functional groups of the material and the dye. The characterization of the biosorbent showed that the material was mainly composed of macroporous fibers with a surface area <5.0 m2 g−1. Elemental analysis showed a majority composition of C (57.19 wt%) and O (37.49 wt%). FTIR and XPS analyses showed that the material had C-O, C=O, -OH, O-C=O, and -NH2 surface groups. RAMAN and TGA were used to evaluate the composition, being cellulose (40.94%), lignin (20.15%), and hemicellulose (3.35%). Finally, the life-cycle assessment at a laboratory scale showed that the proposed biosorbent presents a 17% reduction in several environmental aspects compared to hydrochar, showing promise as an eco-friendly and highly efficient method for the remediation of water contaminated with dye, as well as being a promising alternative for the responsible management of solid waste generated by the tequila industry.

10.
Foods ; 10(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34945653

RESUMEN

Due to the oversupply and scarcity cycles of the Agave tequilana Weber blue variety, the effect of agave age (harvested in 4, 5, and 6 years) as raw material for the tequila 100% agave silver class was studied for each stage in a full-scale (industrial) process. Harvested plants showed differences in their morphological characteristics that affected the amount of juice; this had an impact in the fermentation stage since must composition was modified in the nitrogen content and juice/exudate ratio. This was noticed due to an increase in the production of higher alcohols attributed to the odd-chain fatty of the exudate, which affects n-propanol production. The characterization of the final product showed the feasibility to use agaves (less than 7 years) to produce the Tequila 100% agave silver class and to comply with the quality criteria. Furthermore, the final product was analyzed with the gas chromatography-isotope ratio mass-spectrometry technique to determine its authenticity. The δ13CVPDB isotopic parameter (-13.40‱ in average) values show the type of plant used as a raw material for ethanol production, while the δ18OVSMOW (20.52‱ in average) isotopic parameter can be helpful in corroborating and ensuring the traceability of the product and the geographical location of the beverage production.

11.
Molecules ; 26(6)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808745

RESUMEN

Isotopic ratios of δ13CVPDB and δ18OVSMOW have been used as an additional parameter to ensure the authenticity of the aging time of 100% agave tequila. For this purpose, 120 samples were isotopically analyzed (40 silver class, 40 aged class, and 40 extra-aged classes). The samples were obtained through a stratified sampling by proportional allocation, considering tequila producers from the main different regions of Jalisco, Mexico (Valles 41%, Altos Sur 31%, Cienega 16%, and Centro 12%). The results showed that the δ13CVPDB was found in an average of -12.85 ‰ for all the analyzed beverages, with no significant difference between them. Since for all the tested samples the Agave tequilana Weber blue variety was used as source of sugar to obtain alcohol, those results were foreseeable, and confirm the origin of the sugar source. Instead, the results for δ18OVSMOW showed a positive slope linear trend for the aging time (silver class 19.52‰, aged class 20.54‰, extra-aged class 21.45‰), which is associated with the maturation process, there are oxidation reactions that add congeneric compounds to the beverage, these can be used as tracers for the authenticity of the aging time. Additionally, the experimental data showed homogeneity in the beverages regardless of the production region, evidencing the tequila industry's high-quality standards. However, a particular case occurs with the δ18OVSMOW data for the silver class samples, in which a clear trend is noted with the altitude of the region of origin; therefore, this information suggests that this analytical parameter could be useful to authenticate the regional origin of beverage.


Asunto(s)
Agave , Bebidas Alcohólicas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...